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Abstract

A general equation is derived for the

packed bed under conditions of non-uniform,

dictions of the theory are analyzed for the

annular regionsin a cylindrical packed bed

Small differences in void fraction can lead

dispersion coefficient in a

one dimensional flow. Pre-

simple case of two concentric

with different void fractions.

to significant changes in

the dispersion coefficient for the packed bed, both in laminar and tur-

bulent flow regimes. The radial variations of the average residence time

and spread of a pulse of non-reactive tracer are investigated.
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1. INTRODUCTION

The existence of radial void fraction distributions in packed beds

of particles is well established. Benenate and Brosilow [1] report void

fractions in packed beds of spheres approaching 1 near the wall and ex-

hibiting a damped oscillation up to 9 particle diameters into the bulk

of the bed where the void fraction is 0.4. Similar distributions have

been measured by several other investigators [2,3,4]. Three very recent

articles have focused attention on the importance of this wall effect on

transport parameters in packed beds. Schliinder[5] and Martin [6] were

able to account for the extremely low values of the Nusselt numbers mea-

sured experimentally in packed beds at particle Peclet numbers less than

10, by considering the void fraction in the packed bed as consisting of

two separate regions. In a region at the center of the bed whose area is

no less than 90% of the total bed area, the void fraction was considered

constant at 0.40, while in the remainder of the bed, up to the wall, the

void fraction was considered to have an average value of 0.50. The dif-

ference in fluid velocities in the two regimes was enough to account for

orders of magnitude differences in the Nusselt number at low Peclet numbers

due to the importance of channeling at the wall at these low flow rates.

Botterill and Denl~ye [7] used a function that would describe how the void

fraction would vary as a function of distance away from a cylindrical rod

imbedded in a packed bed of spheres in order to properly take into account

the local flow velocity in their estimates of heat transfer coefficients

from the rod to the spheres. Using this model they obtained much better

agreement with the available data than was possible with models that con-

sidered the fluid velocity around the rods to be the same as the fluid
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velocity corresponding to the average bed void fraction. One is encouraged

by the success of these investigators to

void fraction distribution on dispersion

prove our understanding of dispersion in

explore the consequences of this

in packed beds. This would im-

general and possibly allow for

better interpretationsof dispersion coefficients in packed bed reactors.

Lerou and Froment [8] and Schertz and Bischoff [9] measured velocity pro-

files in packed beds that clearly indicate regions of high flow rate near

the wall, thus providing additional experimental evidence as to the existence

of the void distribution and its importance in packed bed reactors.

Our approach here is to consider the case of one-dimensional flow

in a packed bed subject to a void fraction distribution as described above.

The non-uniformity in the void fraction will result in a non-uniform

velocity profile that can be estimated from the Ergun equation [10]. Follow-

ing the approach pioneered by Taylor [11], we obtain a general equation

for the dispersion coefficient valid for any flow non-uniformity. As a

specific example we consider the void fraction distribution chosen by

SchliJnder[5] and Martin [6] in their analysis. Computations using this

model indicate that these flow non-uniformities can have a drastic effect

on the dispersion coefficient for the packed bed. The response of the bed

to pulses of inert tracer are investigated in order to see how the mean

residence time

position.

2. THEORY

We begin

a non-reactive

and spread of the pulse would vary as a function of radial

our analysis by considering the mass transport equation for

solute in a porous media in terms of the intrinsic phase-
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averaged concentration in the fluid phase <c>a, and the intrinsic phase

average velocity <v>U,

(1)

The development of this equation has been considered in detail by Gray [12],

Slattery [13] and Whitaker [14, 15], using volume-averaging techniques.

The tensor ~ is a dispersion tensor that describes the local dispersion
-

of the solute in the a phase anywhere in the bed. Of course, the components

of ~ are functions of the local void fraction and local velocity in the
-

a phase. In Eq. (1) we have assumed the solute does not diffuse into

the solid particles in the bed, that it is found in low concentrations, and

that the flow in the bed is incompressible. Sincewe are neglecting

transport of solute into the particles, the results of this theory would

apply to gas phase dispersion in a bed of non-porous particles such as

oil shale rubble, and to liquid phase dispersion where the solute or tracer

used in a dispersion experiment has a molecular diameter much greater than

the largest pore diameter of the particles.

The intrinsic phase averaged

puted by using the volume averaged

V*<V>U = o
--

together with

a
<v> =

*

velocity in the a phase may be com-

continuity equation,

(2)

Darcy’s law in the creeping flow regime [16],

(3)
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where K is the permeability tensor. For cases where inertial terms
*

may be of importance, a vectorial form of Ergun’s equation [~0]could

yield a reasonable estimate of the flow distribution.

If we limit ourselves to the case of one dimensional flow in the z

direction then Eqs. (2) and (3) reduce to,

and

d<vz>a
-m-=o

Ka<Vz> = zz a<P>U
‘~ az

where Kzz and c are considered to

(4)

(5)

be only a function of position per-

pendicular to the flow and all off-diagonal elements of ~ are taken to
.

be zero. It is easy to show that the gradient in the pressure in the z

direction is a constant,

(1a<ba= - Ap
az T

so that

Ka Zz<Vz> = —
[)
AP

E~ T

(6)

‘ (7)

A good estimate of,the z component of the permeability tensor may be

obtained from the Blake-Kozeny equation [IO] for

dz

+

~3
K=10Zz

(1 -E)z ‘

aminar flow,

(8)
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where d~ is a particle diameter based on the specific surface to volume

ratio av of the particle,

dp = 6/av (9)

For turbulent flow <v.>U may be estimated from the Burke-Plummer equation
L

[10],

a<Vz> = (10)

In applying Eqs. (9) and (10), it is assumed that AP/1 is constant

in the direction perpendicular to flow. We see that if the void fraction

E varies even a slight amount as a function of position perpendicular

to the flow, the fluid velocity will be greatly affected due to the strong

dependence of <vz>a on &j specially in the laminar flow regime.

Ifwe allow all off-diagonal elements of ~ to be zero, and con-

sider the ratio of the transverse to longitudinal dispersion coefficients

to be a constant, then Eq. (1) for one-dimensional flow in cylindrical

coordinates reduces to,

where

Drr—’aDZz
(12)

Greenkorn and Kessler [17] cite the results of various experimenters
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indicating that the ratio of longitudinal to transverse coefficients of

dispersion (a-l) lies in the range of 3 to 10 for unconsolidated

porous media and can be as large as 60 for consolidated sol~ds. This ratio

remains constant with varying flow rate. Since the velocity <vz>a is

considered for one dimensional flow to be only a function of radial position,

and since Dzz is a function of <vz>a then, ifwe assume a is inde-

pendent of flow rate Eq. (11) can be written as,

(13)

where for simplicity we have dropped the phase average symbol from the

concentration and the velocity, and it is understood that D is the

axial component of the dispersion tensor. We can make Eq. (13) dimension-

less by defining the following dimensionless variables,

C = c/co, Z=zO/uoR2, n = r/R, Uz(m) = vz(r)/uo

(14)
D* = D/R, 6 = tO/R2, Pe = uoR/O

where R is the bed radius, V is the molecular diffusivity of the solute,

U. is a characteristic velocity, usually taken as the area averaged interstitial

velocity over the bed cross section and co is some reference concentration,

usually chosen to be the maximum concentration of an input peak for a pulse

input. Using these definitions, Eq. (13) becomes

(15)
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Nowwe consider the case of a pulse of tracer introduced into a semi-infinite packed

bed at time 8 = O, so that boundary and initial conditions for Eq. (16)

can be written as,

ac=o ~
a-l ‘

=Oandn=l (16)

C=d(e), Z=o (17)

ac=o
32

Z+m

We would like

in the fluid,

<c>

(18)

to develop an equation for the area-averaged concentration

namely, for the quantity,

J
1

= 2 C (n,Z,6)ndq (19)

o

We can multiply Eq. (15) by 2T-1,integrate from O to 1 and apply the

boundary conditions (16) to obtain,

3<C> + 8
w -m ‘Uzc>

where the brackets denote

LIZ,C and D* in terms of

the area-averages [12],

c =<C> +5

“2 = <Uz> + j

D* = <D*> + 5*

2

= * % ‘D*C> (20)
e az

the integral defined by Eq. (19). We now express

theirarea-averaged values and derivations from

(21)

(22)

(23)
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Substituting Eqs. (21)-(23) into Eq. (20) and making use of the property

of the deviations

<t> = <07> = <5*> = o
&

we obtain

(24)

This is the dispersion equation for the packed bed in terms of the area-

averaged interstitial velocity and the area-averaged concentration. The

first term on the right hand side contains a dispersion coefficient which

is the area-averaged value of the local dispersion coefficients in the

bed. The second term is the additional contribution to dispersion caused

by velocity deviations from plug flow. The quantity <~z~> is the axial

component of the dispersion vector, and its properties have been discussed

in detail by Whitaker [14]. The last term on the right hand side is a

new term that arises from deviations in the local dispersion coefficients.

As we shall show later, this term will contribute to the skewness of the

pulse, and under some conditions may be shown to be smaller than the other

terms in the equation. What we need to do now is to obtain an expression

for t, in terms of <C> and calculate <~z~> and <~*~>. This will

be accomplished by applying ideas originally developed by Taylor [11] for

studying dispersion in laminar flow in a tube. The development presented

here is formally different from his approach, andwe will be able to obtain

criteria for when the approximations made can be expected to be valid.
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14ebegin by transforming Eq. (15) to a coordinate system ~ moving

with the velocity of the pulse U
P

which we assume to be unknown,

Z=z-upe

so that Eq. (15) becomes

Looking at the order of magnitudes

clear that for times e such that

be<D*>)”1

(26)

(27)

of the terms in this equation, it is

(28)

the time derivative will be much smaller than the term having to do with

dispersion in the radial direction. Similarly, dispersion in the axial direc-

tion may be neglected relative to convection in the axial direction if

[ Pe2 L<Uz>/<D*>]>> 1 (29)

where L is a dimensionless characteristic pulse length. As time becomes

larger and larger both criterion (28) and (29) will be easier to meet since

the pulse length L increases with

a psuedo-steady state approximation

reduces to the form,

0. If both (28) and (29) are satisfied,

may be invoked on Eq. (15) so that it
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(30)

Using the definition (21) for C and making the additional assumption (used

successfully by Taylor [11]),

.we obtain a second order ordinary differential equation for C,

with boundary conditions,

at—=Oatn=O, lan

(31)

(32)

and the additional constraint (24).

Integrating (31) once and using the boundary condition at ~ = O,

one obtains

$={&,fuzh)-u~ndj:
o

(33)

When we apply boundary condition (32) at n = 1 we find immediately that

J
1

U=2
P Uz(n ’)n’dn’= <Uz> (34)

o
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indicating that the pulse will travel at the average

8
of the fluid. This being the case, we can write Eq.

interstitial velocity

(34) in the form,

(35)

where use has been made of Eq. (22). Integrating (35), we find an expression

for ?,

(36)

The unknown coefficient A may be evaluated by the condition <~> = O.

If we label the double integral in Eq. (36), ~(n), then imposing this

constraint results in the final expression for ~,-

showing,

gradient

ting the

F

●

(37)

as is expected [14], that the deviation ~ is proportional to the

of <c> in the ~ direction, the direction of flow. Evalua-

area integrals,

<iy> = a<c><tizF(nJ>_
a~ ‘

a<c>
<fi*~>. 4*F(TI)>X ‘

(38)

(39)
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and substituting the result into Eq. (23), we obtain the final form for

&
the dispersion equation.

.

‘+<uz’%=[vzF(q)Y$(40)

where F(v) is defined by Eq. (37). The term multiplying the second

derivative is the dispersion coefficient for the packed bed. The last

term on the right hand side contributes to the skewness of the pulse.

Once the integrals in O(n) and F(n) have been evaluated, it is

a simple matter to calculate specific expressions for the coefficients

in the dispersion Eq. (40). As a

in the packed bed as described by

ferent velocities, the same model

specific example, we consider the flow

two concentric annular regions of dif-

used by SchliJnder[5] and Martin [6]

in their analysis of heat transfer data.

3. DISPERSION IN ANNULAR FLOW

Consider the interstitial fluid velocity and local dispersion coeffi-

cients in the packed bed to be described by the functions,

{

uo=vo/uoo<rpg
Uz(d =

‘1 =v,/uoEOMl

/

D* . Do/OO<n<&
D*(q) = 0

(41)

(42)

where c is

velocity and

“1 D,* = D1/OE<n<l
.,

some fraction of the total bed radius. The area averaged

dispersion coefficients are easily shown to be,
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<Uz> = U. E* + U,(I -C*) (43)

<D*> = DO* ~2 + D1*(1 - 52) (44)

so that the deviations of these quantities from their area-averaged values

are,

{

-(u, - UO)(l-E2) O<tl<g
Uz(n) =

(u,
(45)

- UO)C2 ~<q<l

[“

-(D,*- D;}(1 -C*) o<q<~
fj*(q) =

[Df- D; ) E* ~<~<1
(46)

Equation (30) then takes the form,

(+ - Uo)(l - f) a<C> 1 d—=— —
(1

Q ()<q<~aDo* rI d~ n doa7

If we define the parameters,

(47)

AU(1 - C*) WC>A= ~D* — (48)
o 37- ‘

(49)
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where

AU=U, -uo,

then Eq. (31) b~come~

H
-A=~~ ‘t

ndnnfi

B
(1

=1 d d?
Tliivm

with boundary conditions,

(50)

(51)

E<n<l (52)

(53)

C continuous at ~=~
(54)

Again we require that <~> = O.

Solving Eqs. (51) and (52) subject to these constraints we obtain’,

~<n<l (56)

By combining (55) and (56) with (45) and (46) we can perform the appro-

priate area averages to calculate the coefficients in the dispersion equation,
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<~*~> = (AD*AU 54(1 - E*)2 [4C6 - 54 (3 +4 Zng)-C81 3<C>-—
c% 8DO* 8D,*

)
—.. (58)
az

where AD* = D,* - DO*
(59)

It is convenient to write the term AU in terms of ratios of Peclet

numbers,

APe
AU=U, -Uo=— ‘1 - ‘t)

Pe=~

where APe = (v, - vo)R/O

(60)

(61)

Substituting (57) and (58) into the dispersion Eq. (25) we obtain,

where

and

(62)

(63)

(64)

(65)
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Notice that the dispersion coefficient K* in Eq. (62) has two contributions,

one from the area average of the local dispersion coefficients <D>* while

the second, A*, is the effect of the velocity distribution in the packed bed to

dispersion. The term S* represents the contribution of the velocity wofile

in

of

the bed to the skewness of the pulse. From a simple order of magnitude estimate

the terms on the right hand side of Eq. (62) we see that the second derivative

term will dominate the term with the third derivative if the condition,

is satisfied.

Now we calculate the order of magnitude of the terms

(66)

n Eq. (62) by con-

sidering both laminar and turbulent flow reqimes. Following the example of Schlunder

[5], we consider the central core of the packed bed where the velocity is V.

as comprising 90% of the total area, so that gz = 0.9, and E = 0.949. From

the data cited by Greenkorn and Kessler [17]5 we pick a value of the ratio of the

longitudinal to transverse dispersion coefficient equal to 6.5 so that it is

somewhere between 3 and 10 for

Again following Schlunder [5],

‘1
= 0.50 at the wall. In lam”

unconsolidated porous media. This makes U= 0.154.

we let E. = 0.40 at the bulk of the bed and

nar flow in the packed bed, Eqs. (7) and (8)

be,predict that the ratio of the interstitial velocities wil

(67)

while for turbulent flow, Eq. (10) predicts a ratio,
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(68)

. We can now express the area-averaged interstitial velocity across the packed bed

in terms of vo. For laminar flow,

U. = Vot (69)2 + V1(l-~2) = 1.125 V.

while for turbulent flow,

The

for

for
●

of

.
and

= 1.0225 V.
‘o

ratio APe/Pe is equal to

Ape = ‘1-Vo
T

— = 1.11
‘o

laminar flow and

(70)

(71)

APe— = 0.22
Pe

(72)

turbulent flow. The only parameters we need to estimate now are the values

‘D; and D:. Bear [18] has summarized the results of many experimenters

presents a comprehensive plot of D* = Dzz/0 as a function of particle

Peclet number, Pep = xvz>adp/D. The results may be roughly summarized for

our purposes as follows,
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D* : 0.6 pep<1.0 (73)

D* Z Pep Pep.> 1.0

These relationships obviously are not exact, but will be of great help to us in

estimating the values of D; and D~. We divide the calculations into laminar and

turbulent regimes. ,For laminar flowwe let Pep < 1.0 everywhere in the bed

that D: = D; = 0.6 and the dispersion ”coefficient in Eq. (55) becomes,

so

-2
‘~ + 1.45X1O

where use has been made of Eqs. (63) and (64), and the estimate of APe/Pe

for laminar flow. Clearly, for large values of the Peclet number, say for

Pe > 25, the velocity dependent term will dominate so

, 45 ~ ,o-2pe2K*;. . It should be remembered that

if, for example, Pe
P

~ 0.5, in order for the Peclet

25 then the ratio of the bed diameter to the particle

that the value of

Pe = Pep(R/sdp) so that

number to be as large as

diameter should be roughly

equal to 20. This is easily satisfied for many industrial scale packed beds.

Even when Pe = 10, the contribution from the effect of the non-uniform velocity

profile will be of the same order as the contribution from the area-average of

the local dispersion coefficients. Note that S* = O for the case Pep < l.q

since it depends on the difference AD* = D; - D:. The approximation (73)

makes the second term on the right hand size of Eq. (62) identically equal to

zero. For turbulent flow, Eq. (73) indicates that approximately,
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D; ‘1”1— = 1.53T=cv
Do 00

(75)

since vl/vo = 1.225 for the turbulent flow case. Equations (63) and (64)

then combine to give,

where, according to [67) we can approximate D: by,

D; = (Pep)o

Eq. (76) for turbu”

(77)

ent flow then becomes,

1.053(Pe )0
+ 3.182 X &

:2 =
(78)

Pe2 (Pep)o

where the estimate of APe/Pe = 0.22 for turbulent flow has been used.

Equation (78) indicates that unless Pe > 57.5 (Pep)o, the second term, which is

the contribution to dispersion from the non uniform velocity, will be insignifi-

cant. Since the ratio,

(79)

for turbulent flow, then this corresponds to a ratio (R/alp ~ 23. We can

conclude then that in turbulent flow, if R/d,P
<< 23, the wall effect will

dominate dispersion, while if R/dp is significantly less than 23, the wall effect



21-

will be unimportant. It must be remembered that these results are obtained

for a fixed C. Obviously as the ratio alp/R varies one would expect L

to change and significantly affect these conclusions.

An estimate of the coefficient multiplying the third derivative in Eq. (62)

for turbulent flows yields,

S* ~

m ‘D* ~ (1.0125 X 10-3) = 7.67 X 10-4“ =*
o

(80)

where use has been made of Eqs. (75) and (72). The criterion (66) for this term

being negligible in comparison to the dispersion term becomes, upon substituting

Eq. (80),

(1.3 x 103) K* L;2
>> 1 (81)

When the second term in Eq. (78) is unimportant, Eq. (81) indicates that

(Pep)o ~2 >> 7.3 x 10-4 (82)

while when the second term dominates,

L
>> 2.4 (83)

(Pep)o

The time when these criteria are satisfied of course will depend on individual

values of Pe and (pep]o> however, it is not unreasonable to expect Conditions

under which the third derivative term in Eq. (62) could be neglected relative to

the dispersion term under turbulent flow conditions.
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4. Flow Non-uniformities and Pulse Responses

In some applications, it may be of interest to measure flow non-uniformities

in a packed bed by inserting a pulse of inert tracer and measuring the differences

in the residence times in the bed as a function of radial position.

lation presented in Section II allows for a clear interpretation of

such an experiment. If we combine Eqs. (37) and (21), we obtain an

the point concentration in the bed, namely,

The formu-

the results of

equation for

C(q,e,z) = <C>(fj,Z) + F(T-1).& (84)

in a

that

●

☛

stationary frame. An equation of the type (62) would be solved for <C>

would be introduced into Eq. (84),

where we

with the

a<c> +
ae

have let <Uz>

conclusions of

dL Pe’ az’

= 1.0 and we

Section 3. The

<c> = f(e)

<c> =0

<c> =0

(85)

where f(6) is the shape of the input pulse.

have dropped the skewness term in accordance

boundary conditions for Eq. (85) would be,

z =0

Z+cn

e =0

(!36)

We define the moments of <C> with respect to time as,
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Ca

‘k =
r

ek <C> de, k= 0,1,2 (87)

o

and the moments of the point concentration C with respect to time as,

co

‘k =
[

ek C(n,O,Z) de (88)

o

We can relate the mk to the Mk by multiplying Eq. (84) by 6k and

integrating from O to Q, to obtain,

dMo

‘o
= M. + ~(n) ~ s

dM1

‘1
= Ml + F(n) ~ s

(89)

(90)

dM2
and ‘2

= M2 + F(n) ~ (91)

All we need to do now is to find Mo, Ml and M2. This can be accomplished by

taking the Laplace Transform of Eq. (85) and the boundary conditions (86) with

respect to time to obtain,

<c> (s)

●

where f3(s) =

.

One can now use a well

respect to the Laplace

= T(s) exp[f3(s)zl (92)

(93)

known theorem relating moments [19] to derivatives with

Transform variable,

(94)
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and find inwnediately,

M. = 7(0) , (95)

‘1 (96)= ZMO+ I’Ii(O),

2K*Z ~
o + Z2M + 2 ZH1(0) + M2(0),

‘2 = o
(97)

9
Pe’

where the Mk(0) are values of the

(97) into (89) - (91) and defining

hik)~ = mk/mo

moments at 9 = O. Substituting Eqs. (95) -

the absolute moments,

we obtain,

= MO
‘o

(Pi)~= (~i)a + F(T_I)

(u+)~ = (Pj)a + 2F(TI [.c2 + (Pi)al
Pe

(98)

(99)

(loo)

(101)

(102)

Equation (101) is of particular interest to us since it predicts that the resi-

dence time at any radial position T-Iis related to the residence time of the

area-averaged concentration directly by the function F(v).

F(rI) experimentally; one has to place a concentration probe

along the radius, measure the outgoing pulses, calculate the

Thus, to measure

at various positions

average residence time

at the individual points and subtract from this value the average residence time
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for the area-averaged concentration. For the annular flow case solved in Section

III one can easily see that from Eqs. (55) and (56) that

for O<n<g and

In Figure 1, we show F(n) for the laminar flow parameters, namely,

a = 0.154, APe/Pe= 1.11, D: = ! = 0.6, and E2 = 0.90. Even though

the velocity profile has a discontinuity at n = 0.949, the effect on the residence

times gets transmitted radially throughout the entire cross section. Nhen

F(n) goes through zero, near n = 0.7, the pulse at that point has the same resi-

dence time as the area-averaged concentration.

Since the second central moment,

[

m

1
(IJ$a = ~ [e - (Pi)a]z<c>do (105)

is related to the second absolute moment (Pi)a by the equation,

(106)

it is not hard to show using Eq. (81) that



.

4 ●
m *
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(lJ*)l = (v*)a + ~ F(n) - [F(n)]z (107)

where (lJ*)t is the second central moment of the pulse output at a given radial

position. The second central moment represents the spread of the pulse in time

relative to its mean residence time. For laminar flow K*/Pe2 is given by Eq. (74)

so that with a given fixed value of Pe we can calculate (U2)1 - (U2)a according

to Eq. (107), (83) and (84). For the case Pe = 50and laminar flow, the same

conditions as the results obtained in Figure 1, Figure 2 shows how the spread of

the pulses at given radial positions are related to the spread of the area averaged

concentration.” Equation (107) predicts that this quantity will be less than zero

almost throughout the entire range of T-I,and have the larqest negative value near

the wall and at the center of the bed. The results of Figures 1 and 2 indicate

possible ways in which flow maldistributions can be detected from measurements of

pulse responses as a function of radial position in the bed.

5. Conclusions——

A general equation has been derived for the coefficients in the dispersion

equation for the case of one-dimensional non-uniform flow in a packed bed. As

an example, the implications of the model of Schlunder [5] and Martin [6] for

flow non-uniformities in a packed bed have been investigated. Possible techni-

ques for measuring the effect of flow non-uniformities have been developed by

considering the response of the system to a pulse of non-reactive tracer.
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NOTATION

a
v

A

co

c

<c>

i

dp

D, Dzz

Drr

D

surface area per unit volume for particles

coefficient of integration

intrinsic phase-averaged solute concentration

characteristic concentration

dimensionless intrinsic phase-averaged concentration

area-averaged value of C over the bed cross section

deviation of C from its area-averaged value

mean particle diameter

axial component of the dispersion tensor

radial component of the dispersion tensor

dispersion tensor

D* dimensionless

*
D;, D1

AD*

<D*>

~*

v

f(0)

F(n)

KZz

of Lawrence Livermore Laboratories

research, and for fruitful

values of D*
respectively

difference D;

area-averaged

deviation of

axial component of the dispersion tensor

- D;

value of D* over the bed cross section

D* from its area-averaged value

molecular diffusivit.y of the solute

shape of the input ~ulse

function multiplying the gradient in expression for c

axial component of the permeability tensor



K

●

K*

L

mk

‘k

Mk(0)

AP

+>a

Pe

Pe

(P:p)o

APe

r

R

s

S*

t

u
o

Uz

Ul, U.

Au

up

<Uz>

iz

-30-

permeability tensor

dimensionless dispersion coefficient
equation for the bed

n dispersion

length of bed

dimensionless pulse length

kth moment with resDect to time of C

kth moment with respect to time of <C>

kth moment of <C> at 0 = O

pressure drop

intrinsic phase-averaged pressure

Peclet number for the bed, UoR/lJ

particle Peclet number, c-wz>adp/O

particle Peclet number when O <n <E

difference in Peclet numbers, (V1-VO) R/D

radial coordinate

bed radius

Laplace Transform variable

skewness parameter

time

area-averaged value of Vz over the bed cross section

dimensionless interstitial velocity in the axial direction

values of Uz from O<V<~ and E<v<l
respectively

difference U1 - U.

dimensionless pulse velocity

area-averaged value of Uz over the bed cross section

deviation of Uz from its area-averaged value



aq>

* az>~, Vz

v
● o’ ‘1

z
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Greek Symbols

a

E

‘o’El

~

n

e

!3(s)

(u~)~

(lJQa

9 (~k)l

(Pk)
a

0
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intrinsic phase-averaged velocity vector

axial component of the intrinsic phase-averaged

interstitial velocities for O < n < E and,.
~<r)<l respectively

axial coordinate

dimensionless axial coord

dimensionless axial coord

velocity

nate

nate moving at pulse velocity

ratio of transverse to longitudinal dispersion coef<
ficients

bed void fraction

void fraction for O<n < E and c <n < 1
respectively

fraction of bed radius

dimensionless radial coordinate

dimensionless time

function of the Laplace Transform variable

kth absolute moment of C at a given n, Z

kth absolute moment of ~> at a given Z

kth central moment of C at a given n, Z

kth central moment of <C> at a given Z



s

●

●

.

-37-

REFERENCES

1. Benenate, R.F. and C.B. Brosilow, AIChE Journal, 1962, 3_, 359.

2. Roblee, L.H.S., R.M. Baird and J.W. Tierney, AIChE Journal, 1958, 4_,

460.

3. Pillai, K.K., Chem. Engr. Sci., 1977, 32, 59.—

4. Lederc, D., in “The Scientific Basis of Filtration,” K.J. Ives, Ed.,

Noordhoff, Leyden, 1975.

5. Schliinder, E., in “Chemical Reaction Engineering Reviews - Houston,”

ACS Symposium Series, No. 72, American Chemical Sot., Washington, D.C.,

1978, p. llOff.

6. Martin, H., Chem. Engr. Sci., 1978, ~, 913.

7. Botterill, J.14.S. and A.O.O. Denlaye, Chem. Eng. Sci., 1978, ~, 509.

8. Lerou, J.J. and G.F. Froment, Chem. Engr. Sci., 1977, 32_,853.

9. Schertz, W.W. and K.B. Bischoff, AIChE Journal, 1969, 15_, 597.

10. Bird, R. Byron, W.E. Stewart and E.N. Lightfoot, “Transport Phenomena,”

John Wiley and Sons, New York, 1960, p. 196 ff.

11. Taylor, G.I., Proc. Royal Sot. (London), 1953, A219, 186.

12. Gray, W.G., Chem. Engr. Sci., 1975, 30, 229.—

13. Slattery, J.C., “Momentum, Energy and Mass Transport in Continua,”

McGraw-Hill, New York, 1972.

14. Whitaker, S., AIChE Journal, 1967, 13_,420.

15. Whitaker, S., Chem. Engr. Sic., 1973, @ 139.

16. Gray, W.G. and K. O’Neil, Water Res. Research, 1976, ~, 148.

17. Greenkorn, R.A. and D.P. Kessler, in “Flow Through Porous Media,”

American Chemical Society, Washington, D.C., 1970, p. 159.



-38-

18. Bear, J., in “Flow Through Porous Media,” R. De Wiest, Ed., Academic Press,

● New York, 1969, Ch. 4.

19. Wong, A.K., B.J. McCoy and R.G. Carbonell, J. of Chromat. , 1976, 129, 1.
*


